Title of article :
Optimization of energy consumption of ozone generator and plasma generator in decolorization and disinfecting of water system in urban residence
Author/Authors :
Mosstafavi ، M.H. Department of Environment - University of Tehran , Karbassi ، A.R. Department of Environment - University of Tehran , Pazoki ، M. Department of Environment - University of Tehran
Abstract :
BACKGROUND AND OBJECTIVES: The water field futurology is mostly focused on the water shortage and resulting political-security crises. However, the emphasis of this study is on the water pollution crisis. This study utilizes water decolorization and microbial decontamination as novel and low-risk methods in water and water resources sanitization with the preservation of the municipal environment approach. Modern oxidation methods for pre-treatment or aid-treatment have well-attained their place in the water and wastewater treatment process to reduce microbial and chemical contamination of water. Applying light, plasma, ozone, and Ultraviolet light is one of the modern and eco-friendly methods for water treatment and disinfection with growing usage. METHODS: In this research, various types of ozone and plasma generators, with the approach of energy consumption reduction, were manufactured for simultaneous decolorization and disinfecting of the water. All these devices consist of three main sections; frequency-increasing circuits, voltage-increasing transformers, and a reactor based on electrical discharge in gas. The simulation was performed using Orcad and PSPICE and Comsol softwares. After designing and simulation, a pilot of each of these three sections was made. FINDINGS: Both plasma and ozone reactors, which act as light tubes with a purple color spectrum were made and optimized for water treatment in the form of tubular tubes and flat cell for volume and surface radiation. Microbial testing of 8 water samples in terms of coliform in laboratory was confirmed by the Iran Environmental Organization mpn/100ml. CONCLUSION: After computer simulation, all three basic sections of an ozone generator device with a power consumption equal to a 30-watt lightbulb were made and optimized. By 5-minute injection of the ozone generated by this device into the water containing methylene blue as the color contamination index and Escherichia coli as the microbial contamination index, 99% of microbial decontamination was achieved, along with decolorization.
Keywords :
Color Contaminated Water , Microbial Contaminated Water , Ozone , Ozonation , Plasma
Journal title :
International Journal of Human Capital in Urban Management (IJHCUM)
Journal title :
International Journal of Human Capital in Urban Management (IJHCUM)