Title of article :
Development of a Unifying Theory for Data Mining Using Clustering Technique
Author/Authors :
hamodi, yaser issam ministry of higher education scientific research, Baghdad, Iraq , hussein, ruaa riyadh al-iraqia university - college of education for girls, Baghdad, iraq , yousir, naeem th. al-nahrain university - college of information engineering, Baghdad, Iraq
Abstract :
A performance evaluation of four different clustering techniques was carried out based on segmenting consumer by product type and by product usage in the research. Cobweb, DBSCAN, EM and k-means algorithms were evaluated based on the computational time, accuracy of the result produced and the purity of the result produced. The experiment was performed using WEKA as a data mining tool. The performance evaluation of the four techniques showed that K-means outperformed others in all considered evaluation measure while the EM technique was the second best in terms of accuracy and purity, outperforming the other two. DBSCAN technique was the 3^rd best of the selected algorithms even as its computational time is shorter than that of EM while the fourth best performing calculation has been believed to be the Spider web calculation as respects to immaculateness, exactness and computational time.
Keywords :
Cobweb , DBSCAN , EM , K , means Algorithm , WEKA