Title of article :
Ab-initio Investigation of Mechanical Properties of MX2(M=Zr, Hf; X=S, Se, Te) Transition Metal Dichalcogenides Nano Tubes (TMDNTs)
Author/Authors :
Haji Malekkheili ، Abdollah Departments of Physics - Islamic Azad University, Ayatollah Amoli Branch , Yaghoubi ، Mojtaba Departments of Physics - Islamic Azad University, Ayatollah Amoli Branch , Amani ، Alireza Department of Physics - Islamic Azad University, Ayatollah Amoli Branch
Abstract :
Miniaturization of bulk crystals in any direction down to nanometer dimensions leads to the emergence of quantum confinement phenomenon, which is technologically favorable. Transition Metal Dichalcogenides (TMDs) are important mechanical materials that have a layered structure. In addition, ach layer consists of three atomic layers. TMD Nano Tubes (TMDNTs) can be created by rolling such a layer. This study investigates structural, mechanical, and bonding properties of TMDNTs. In particular, two important quantities, Young’s modulus and Poisson’s ratio, are calculated for 6 zigzag MX2 (M=Zr, Hf; X=S, Se, Te) nanotubes and the results are compared with those of other known nanotubes. The computed value of Young’s modulus is greater than that of blue Phosphorus and, in some cases, higher than those of WS2 nanotubes (which are experimentally synthesized). Given the increase in the bond length between M and X atoms, the ratio of Young’s modulus to Poisson’s increases as the atomic number X is reduced. However, there is no significant difference in the aforementioned quantity for ZrX2 and HfX2 nanotubes due to the close bond lengths of Zr-X and Hf-X. The band gap confirms this finding. A Mulliken charge analysis was conducted to investigate the amount of charge transfer between M and X atoms to observe the strength of bond lengths.
Keywords :
Transition metal dichalcogenides , Young’s modulus , Poison’s ratio , density functional theory , Mechanical Properties
Journal title :
Journal of Applied Dynamic Systems and Control
Journal title :
Journal of Applied Dynamic Systems and Control