Title of article :
A Seneta’s Conjecture and the Williamson Transform
Author/Authors :
Omey ، Edward Dept. MEES, Campus Brussels , Cadena ، Meitner Universidad de las Fuerzas Armadas
From page :
227
To page :
241
Abstract :
Considering slowly varying functions (SVF), Seneta in 2019 conjectured the following implication, for α ≥ 1, ∫ x 0 yα−1(1 − F(y))dy is SVF ⇒ ∫ x 0 yαdF(y) is SVF, as x → ∞, where F(x) is a cumulative distribution function on [0,∞). By applying the Williamson transform, an extension of this conjecture is proved. Complementary results related to this transform and particular cases of this extended conjecture are discussed.
Keywords :
Regular variation , De Haan class , Truncated moments , Williamson transform
Journal title :
Sahand Communications in Mathematical Analysis
Journal title :
Sahand Communications in Mathematical Analysis
Record number :
2754323
Link To Document :
بازگشت