Title of article :
17β-Estradiol-Loaded Exosomes for Targeted Drug Delivery in Osteoporosis: A Comparative Study of Two Loading Methods
Author/Authors :
Gholami Farashah ، Mohammad Sadegh Department of Anatomical Sciences - Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Biotechnology Research Center, Stem Cell Research Center, Faculty of medicine - Tabriz University of Medical Sciences , Javadi ، Maryam Department of Anatomical Sciences - Stem Cell Research Center, Faculty of medicine - Tabriz University of Medical Sciences , Soleimani Rad ، Jafar Department of Anatomical Sciences - Stem Cell Research Center, Faculty of medicine - Tabriz University of Medical Sciences , Shakouri ، Kazem Physical Medicine and Rehabilitation Research Center, Aging Research Institute - Tabriz University of Medical Sciences , Asnaashari ، Solmaz Biotechnology Research Center - Tabriz University of Medical Sciences , Dastmalchi ، Siavoush Biotechnology Research Center, Faculty of Pharmacy - Tabriz University of Medical Sciences , Nikzad ، Sadeneh Biology Department - Concordia University , Roshangar ، Leila Department of Anatomical Sciences - Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Stem Cell Research Center, Faculty of medicine - Tabriz University of Medical Sciences
Abstract :
Purpose: Exosomes are natural nanoparticles that participate in intercellular communication through molecular transport. Recently, due to their membrane vesicular structure and surface proteins, exosomes have been used extensively in the research field of drug delivery. Osteoporosis is an inflammation in which the cellular balance of bone tissue is disturbed that reduces bone density and making bone prone to abnormal fractures with small amount of force. Utilizing estrogen is one of the main therapeutic strategies for osteoporosis. Despite the positive effects of estrogen on bone tissue, changes in the natural estrogen levels of the body can cause a number of diseases such as different types of cancer. Therefore, designing a therapeutic system which controls more accurate tissue targeting of estrogen seems to be a rational and promising practical approach. Methods: In this study, bone marrow mesenchymal stem cells (BMMSCs)-derived exosomes were loaded by estradiol using two different methods of drug loading, namely incubation and sonication methods and then the survival effects of the drug loaded exosomes on BMMSCs was investigated. Results: Examination of size, shape, and surface factors of exosomes in different states (pure exosomes and drug-loaded exosomes) showed that the round morphology of exosomes was preserved in all conditions. However, the particles size increased significantly when loaded by sonication method. The increased survival of BMMSCs was noted with estradiol-loaded exosomes when compared to the control group. Conclusion: The results suggest that estradiol-loaded exosomes have potential to be used as nano-drug carriers in the treatment of osteoporosis.
Keywords :
Osteoporosis , Exosome , Drug delivery , Bone marrow mesenchymal stem cells
Journal title :
Advanced Pharmaceutical Bulletin
Journal title :
Advanced Pharmaceutical Bulletin