Title of article :
Two step size algorithms for strong convergence for a monotone operator in Banach spaces
Author/Authors :
Mendy ، John T. Mathematics Department - University of The Gambia, Brikama Campus , Mendy ، Furmose Mathematics Department - University of The Gambia, Brikama Campus
From page :
217
To page :
225
Abstract :
For $p\geq 2$, let $E$ be a $2$ uniformly smooth and $p$ uniformly convex real Banach spaces and let a mapping $\displaystyle \Phi : E \to E^{*}$ be Lipschitz, and  strongly monotone such that $\displaystyle \Phi^{-1}(0)\neq \emptyset$. For an arbitrary $(\{\xi_{1}\}, \{\psi_{1}\})\in E$, we define the sequences $\{\xi_{n}\}$ and $\{\psi_{n}\}$ by\begin{equation*}    \left\{      \begin{array}{ll}         \psi_{n+1} = J^{-1}(J\xi_{n} - \theta_{n}\Phi\xi_{n}), \hbox{$n\geq 0$} \\         \xi_{n+1} = J^{-1}(J\psi_{n+1} - \lambda_{n}\Phi\psi_{n+1}), \hbox{$n\geq 0$} \\      \end{array}    \right.\end{equation*}where $\lambda_{n}$ and $\theta_{n}$ are positive real number and $J$ is the duality mapping of $E$. Letting $(\lambda_{n}, \theta_{n})\in (0,\Lambda_{p})$ where $\Lambda_{p} 0$, then $\xi_{n}$  and $\psi_{n}$ converges strongly to $\xi^{*}$,   a unique solution of the equation $\Phi \xi = 0$.
Keywords :
Lipschitz , Equations , generalized monotone , Bounded
Journal title :
International Journal of Nonlinear Analysis and Applications
Journal title :
International Journal of Nonlinear Analysis and Applications
Record number :
2756029
Link To Document :
بازگشت