Title of article :
Detecting ADHD Based on Brain Functional Connectivity Using Resting-State MEG Signals
Author/Authors :
Hamedi ، Nastaran Department of Biomedical Engineering - Faculty of Electrical Engineering - K. N. Toosi University of Technology , Khadem ، Ali Department of Biomedical Engineering - Faculty of Electrical Engineering - K. N. Toosi University of Technology , Delrobaei ، Mehdi Department of Biomedical Engineering - Faculty of Electrical Engineering - K. N. Toosi University of Technology , Babajani-Feremi ، Abbas Dell Medical School - University of Texas at Austin
From page :
110
To page :
118
Abstract :
Purpose: Attention Deficit Hyperactivity Disorder (ADHD) is now recognized as the most common childhood behavioral disorder. This disorder causes school problems and social incompatibility. Thus an accurate diagnosis can help diminish such problems. In this paper, we propose a brain connectomics approach based on eyes-open resting state Magnetoencephalography (rs-MEG) to diagnose subjects with ADHD from Healthy Controls (HC). Materials and Methods: We used the eyes-open rs-MEG signals recorded from 25 subjects with ADHD and 25 HC. We calculated Coherence (COH) between the MEG sensors in the conventional frequency bands (i.e., delta, theta, alpha, beta, and gamma), selected the most discriminative COH measures by the Neighborhood Component Analysis (NCA), and fed them to three classifiers, including Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel, K-Nearest Neighbors (KNN), and Decision Tree to classify ADHD and HC. Results: We achieved the best average accuracy of 91.1% for a single-band classifier based on the COH in the delta-band as an input feature of the SVM. However, when we integrated the COH values of all frequency bands as input features, the average accuracy was slightly improved to 92.7% using the SVM classifier. Conclusion: Our results demonstrate the capability of a functional connectomics approach based on rs-MEG for the diagnosis of ADHD. It is noteworthy that, to the best of our knowledge, COH has not yet been used to diagnose ADHD using rs-MEG data. Furthermore, there is no study on diagnosing ADHD using eyes-open rs-MEG. Thus, a novelty of our proposed method is to use COH and eyes-open rs-MEG data to diagnose ADHD. Moreover, our proposed method showed promising results compared with previous rs-MEG studies for the diagnosis of ADHD.
Keywords :
Attention Deficit Hyperactivity Disorder , Resting State Magnetoencephalography , Functional Connectivity , Coherence , Neighborhood Component Analysis , Machine Learning
Journal title :
Frontiers in Biomedical Technologies
Journal title :
Frontiers in Biomedical Technologies
Record number :
2757659
Link To Document :
بازگشت