Author/Authors :
Ahmadzade Irandoost ، Soheil Department of Medical Physics and Biomedical Engineering - School of Medicine - Tehran University of Medical Sciences , Mirafzali Saryazdi ، Faeze Sadat Department of Medical Physics and Medical Engineering - Medical School - Tehran University of Medical science
Abstract :
Alzheimer s disease (AD) is in the dementia group and is one of the most prevalent neurodegenerative disorders. Between existing characteristics, white matter (WM) is a known marker for AD tracking, and WM segmentation in MRI based on clustering can be used to decrease the volume of data. Many algorithms have been developed to predict AD, but most concentrate on the distinction of AD from Cognitive Normal (CN). In this study, we provided a new, simple, and efficient methodology for classifying patients into AD and MCI patients and evaluated the effect of the view dimension of Fuzzy C means (FCM) in prediction with ensemble classifiers. Materials and Methods: We proposed our methodology in three steps; first, segmentation of WM from T1 MRI with FCM according to two specific viewpoints (3D and 2D). In the second, two groups of features are extracted: approximate coefficients of Discrete Wavelet Transform (DWT) and statistical (mean, variance, skewness) features. In the final step, an ensemble classifier that is constructed with three classifiers, K-Nearest Neighbor (KNN), Decision Tree (DT), and Linear Discriminant Analysis (LDA), was used. Results: The proposed method has been evaluated by using 1280 slices (samples) from 64 patients with MCI (32) and AD (32) of the ADNI dataset. The best performance is for the 3D viewpoint, and the accuracy, precision, and f1-score achieved from the methodology are 94.22%, 94.45%, and 94.21%, respectively, by using a ten-fold Cross-Validation (CV) strategy. Conclusion: The experimental evaluation shows that WM segmentation increases the performance of the ensemble classifier, and moreover the 3D view FCM is better than the 2D view. According to the results, the proposed methodology has comparable performance for the detection of MCI from AD. The low computational cost algorithm and the three classifiers for generalization can be used in practical application by physicians in pre-clinical.