Title of article :
DUAL RICKART (BEAR) MODULES AND PRERADICALS
Author/Authors :
Asgari ، Samira Department of Mathematics - Faculty of Mathematical Sciences - University of Mazandaran , Talebi ، Yahya Department of Mathematics - Faculty of Mathematical Sciences - University of Mazandaran , Moniri Hamzekolaee ، Ali Reza Department of Mathematics - Faculty of Mathematical Sciences - University of Mazandaran
From page :
179
To page :
191
Abstract :
In this work, we introduce dual Rickart (Baer) modules via the concept of preradicals. It is shown that W is τ -d-Rickart if and only if W = τ (W) ⊕ L such that τ (W) is a dual Rickart module. We prove that a module W is τ -d Baer if and only if W is τ -d-Rickart and W satisfies strongly summand sum property for d.s. submodules of W contained in τ(W). Via τ(RR), we characterize right τ -d Baer rings.
Keywords :
Preradical , Dual Rickart module , τ , d , Rickart module , τ , d Baer module
Journal title :
Journal of Algebraic Systems
Journal title :
Journal of Algebraic Systems
Record number :
2758330
Link To Document :
بازگشت