• Title of article

    Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders

  • Author/Authors

    Banihashemian ، Abdolvahab Advanced Medical Sciences and Technologies Department - Faculty of Biomedical Engineering - Islamic Azad University, Central Tehran Branch , Zamanlui Benisi ، Soheila Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute - Islamic Azad University, Tehran Central Branch , Hosseinzadeh ، Simzar Medical Nanotechnology and Tissue Engineering Research Center, School of Advanced Technologies in Medicine - Shahid Beheshti University of Medical Sciences , Shojaei ، Shahrokh Department of Biomedical Engineering - Islamic Azad University, Central Tehran Branch , Abbaszadeh ، Hojjat Allah Laser Application in Medical Sciences Research Center, Hearing Disorders Research Center, Loghman Hakim Hospital - Shahid Beheshti University of Medical Sciences

  • From page
    176
  • To page
    191
  • Abstract
    Purpose: Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations. Methods: Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined. Results: Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other. Conclusion: For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.
  • Keywords
    Osteoarthritis , Hydrogel , Biphasic scaffold , Polymer , Mineral , Cartilage and Bone
  • Journal title
    Advanced Pharmaceutical Bulletin
  • Journal title
    Advanced Pharmaceutical Bulletin
  • Record number

    2759916