Title of article :
A Note on Stability Properties of Powers of Polymatroidal Ideals
Author/Authors :
Mafi ، Amir Department of Mathematics - School of Mathematics - University of Kurdistan , Naderi ، Dler Department of Mathematics - School of Mathematics - University of Kurdistan
From page :
3937
To page :
3945
Abstract :
Let $I$ be a matroidal ideal of degrre $d$ of a polynomial ring $R=K[x_1,...,x_n]$, where $K$ is a field.Let $\astab(I)$ and $\dstab(I)$ be the smallest integer $n$ for which $\Ass(I^n)$ and $\depth(I^n)$ stabilize, respectively.In this paper, we show that $\astab(I)=1$ if and only if $\dstab(I)=1$. Moreover, we prove that if $d=3$, then $\astab(I)=\dstab(I)$. Furthermore, we show that if $I$ is an almost square-free Veronese type ideal of degree $d$, then $\astab(I)=\dstab(I)=\lceil\frac{n-1}{n-d}\rceil$.
Keywords :
Polymatroidal ideal , Depth and associated primes stability number
Journal title :
Bulletin of the Iranian Mathematical Society
Journal title :
Bulletin of the Iranian Mathematical Society
Record number :
2775216
Link To Document :
بازگشت