Title of article :
Fault-tolerant capability analysis of six-phase induction motor with distributed, concentrated, and pseudo-concentrated windings
Author/Authors :
Alemi-Rostami ، M. Department of Electrical Engineering - Khayam Research Institute (KRI) - Ministry of Science Research, and Technology , Rezazadeh ، G. School of Electrical and Computer Engineering, College of Engineering - University of Tehran , Tahami ، F. Department of Electrical Engineering - Sharif University of Technology , Akbari Resketi ، H. R. Department of Electrical and Computer Engineering - Babol Noshirvani University of Technology
Abstract :
Six-phase motors are becoming more popular because of their advantages such as lower torque ripple, better power distribution per phase, higher efficiency, and fault-tolerant capability compared to the three-phase ones. This paper presents the fault-tolerant capability analysis of a symmetrical six-phase induction motor equipped with distributed, conventional concentrated, and pseudo-concentrated windings under open-circuit fault scenarios. For further investigation, different load types such as constant-speed, constant-torque, and constant-power are applied to the motor. Two concepts of magnetic and physical phase separations are introduced as factors affecting the motor reliability. Analytically, these factors give an insight into how the pseudo-concentrated winding could be a fault-tolerant alternative. Moreover, five parameters such as the change of output power, power loss, power factor, efficiency, and expected load loss are considered as the fault-tolerant capability parameters to evaluate the windings reliability. The aforementioned parameters are reported using the finite element analysis for different fault scenarios and different load types. Although the baseline motor dimensions are not optimized for applying the pseudo-concentrated winding, the pseudo-concentrated shows a promising performance with high fault-tolerant capability.
Keywords :
Concentrated winding , Distributed winding , Expected load loss , Fault , tolerant capability , magnetic separation , Open , circuit fault , Pseudo , concentrated winding , Physical phase separation , Reliability analysis , Six , phase induction machine
Journal title :
Scientia Iranica(Transactions D: Computer Science and Electrical Engineering)
Journal title :
Scientia Iranica(Transactions D: Computer Science and Electrical Engineering)