Title of article :
Sharp lower bounds on the metric dimension of circulant graphs
Author/Authors :
Knor ، Martin Slovak University of Technology , Škrekovski ، Riste Faculty of Mathematics and Physics - University of Ljubljana , Vetrík ، Tomáš Department of Mathematics and Applied Mathematics - University of the Free State
From page :
79
To page :
98
Abstract :
For n ≥ 2t + 1 where t ≥ 1, the circulant graph Cn(1, 2, . . . , t) consists of the vertices v0, v1, v2, . . . , vn−1 and the edges vivi+1, vivi+2, . . . , vivi+t, where i = 0, 1, 2, . . . , n − 1, and the subscripts are taken modulo n. We prove that the metric dimension dim(Cn(1, 2, . . . , t)) ≥ |2t/3| + 1 for t ≥ 5, where the equality holds if and only if t = 5 and n = 13. Thus dim(Cn(1, 2, . . . , t)) ≥ |2t/3| + 2 for t ≥ 6. This bound is sharp for every t ≥ 6.
Keywords :
Cayley graph , distance , resolving set
Journal title :
Communications in Combinatorics and Optimization
Journal title :
Communications in Combinatorics and Optimization
Record number :
2777647
Link To Document :
بازگشت