Title of article :
The topology of balls and Gromov hyperbolicity of Riemann surfaces
Author/Authors :
Portilla، Ana نويسنده , , Rodriguez، Jose M. نويسنده , , Touris، Eva نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-316
From page :
317
To page :
0
Abstract :
We prove that every ball in any non-exceptional Riemann surface with radius less or equal than 1\2 log3 is either simply or doubly connected. We use this theorem in order to study the hyperbolicity in the Gromov sense of Riemann surfaces. The results clarify the role of punctures and funnels of a Riemann surface in its hyperbolicity.
Keywords :
Gromov hyperbolicity , Funnel , Puncture , Riemann surface
Journal title :
DIFFERENTIAL GEOMETRY & APPLICATIONS
Serial Year :
2004
Journal title :
DIFFERENTIAL GEOMETRY & APPLICATIONS
Record number :
31016
Link To Document :
بازگشت