Title of article
FROM BARGMANN REPRESENTATIONS TO DEFORMED HARMONIC OSCILLATOR ALGEBRAS
Author/Authors
IRAC-ASTAUD، MICHELE نويسنده , , RIDEAU، GUY نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
-136
From page
137
To page
0
Abstract
Deformed Harmonic Oscillator Algebras (DHOA) are generated by four operators: two mutually adjoint a and a , self-adjoint N, and the unity 1. The Bargmann-Hilbert space is defined as a space of functions, holomorphic in a ring of the complex plane, equipped with a scalar produce involving a true intégral. In a Bargmann representation, the operators of DHOA act un a Bargmann-Hilbert space, and the creation (or the annhilation operator) is the multiplication by z. We discuss conditions for the existence of DHOA assumed to admit a given Bargmann representation.
Keywords
supermomentum , gravitational energy-momentum , gravitational superenergy , general relativity , gravitational field
Journal title
Repotrts on Mathematical Physics
Serial Year
1999
Journal title
Repotrts on Mathematical Physics
Record number
31503
Link To Document