Title of article :
A Quantitative Categorical Analysis of Metadata Elements in Image-Applicable Metadata Schemas
Author/Authors :
Greenberg، Jane نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2001
Pages :
-916
From page :
917
To page :
0
Abstract :
This article reports on a quantitative categorical analysis of metadata elements in the Dublin Core, VRA Core, REACH, and EAD metadata schemas, all of which can be used for organizing and describing images. The study found that each of the examined metadata schemas contains elements that support the discovery, use, authentication, and administration of images, and that the number and proportion of elements supporting functions in these classes varies per schema. The study introduces a new schema comparison methodology and explores the development of a class-oriented functional metadata schema for controlling images across multiple domains.
Keywords :
relational learning , text categorization , predicate invention , Naive Bayes
Journal title :
Journal of the American Society for Information Science and Technology
Serial Year :
2001
Journal title :
Journal of the American Society for Information Science and Technology
Record number :
35124
Link To Document :
بازگشت