Title of article :
Kernel Regression for Image Processing and Reconstruction
Author/Authors :
Takeda، نويسنده , , H.، نويسنده , , Farsiu، نويسنده , , S.، نويسنده , , Milanfar، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
18
From page :
349
To page :
366
Abstract :
In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ideas for use in image denoising, upscaling, interpolation, fusion, and more. Furthermore, we establish key relationships with some popular existing methods and show how several of these algorithms, including the recently popularized bilateral filter, are special cases of the proposed framework. The resulting algorithms and analyses are amply illustrated with practical examples.
Keywords :
Nonlinear filter , Scaling , spatiallyadaptive , Bilateral filter , Denoising , super-resolution. , Fusion , interpolation , irregularly sampled data , kernel function , Kernel regression , localpolynomial , Nonparametric
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2007
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
395616
Link To Document :
بازگشت