Title of article :
Dense estimation and object-based segmentation of the optical flow with robust techniques
Author/Authors :
Memin، نويسنده , , E.، نويسنده , , Perez، نويسنده , , P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
17
From page :
703
To page :
719
Abstract :
In this paper, we address the issue of recovering and segmenting the apparent velocity field in sequences of images. As for motion estimation, we minimize an objective function involving two robust terms. The first one cautiously captures the optical flow constraint, while the second (a priori) term incorporates a discontinuity-preserving smoothness constraint. To cope with the nonconvex minimization problem thus defined, we design an efficient deterministic multigrid procedure. It converges fast toward estimates of good quality, while revealing the large discontinuity structures of flow fields. We then propose an extension of the model by attaching to it a flexible object-based segmentation device based on deformable closed curves (different families of curve equipped with different kinds of prior can be easily supported). Experimental results on synthetic and natural sequences are presented, including an analysis of sensitivity to parameter tuning.
Keywords :
incremental multiresolution , optical flow , Motion Segmentation , robust estimators. , Closed segmenting curve , multigrid nonconvex minimization
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1998
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396028
Link To Document :
بازگشت