Title of article :
Fast, robust total variation-based reconstruction of noisy, blurred images
Author/Authors :
Vogel، نويسنده , , C.R.، نويسنده , , Oman، نويسنده , , M.E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
12
From page :
813
To page :
824
Abstract :
Tikhonov regularization with a modified total variation regularization functional is used to recover an image from noisy, blurred data. This approach is appropriate for image processing in that it does not place a priori smoothness conditions on the solution image. An efficient algorithm is presented for the discretized problem that combines a fixed point iteration to handle nonlinearity with a new, effective preconditioned conjugate gradient iteration for large linear systems. Reconstructions, convergence results, and a direct comparison with a fast linear solver are presented for a satellite image reconstruction application.
Keywords :
preconditioner , regularization , total variation. , Fixed point iteration , image reconstruction , Cell-centered finite differences , Conjugate gradient , Deconvolution
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1998
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396037
Link To Document :
بازگشت