Title of article :
Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
Author/Authors :
Xavier Descombes، نويسنده , , X.، نويسنده , , Morris، نويسنده , , R.D.، نويسنده , , Zerubia، نويسنده , , J.، نويسنده , , Berthod، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Recent developments in statistics now allow maximum
likelihood estimators for the parameters of Markov random
fields (MRF’s) to be constructed. We detail the theory required,
and present an algorithm that is easily implemented and practical
in terms of computation time. We demonstrate this algorithm on
three MRF models—the standard Potts model, an inhomogeneous
variation of the Potts model, and a long-range interaction model,
better adapted to modeling real-world images. We estimate the
parameters from a synthetic and a real image, and then resynthesize
the models to demonstrate which features of the image have
been captured by the model. Segmentations are computed based
on the estimated parameters and conclusions drawn.
Keywords :
Pottsmodel. , maximum likelihood , Chien model , Hierarchical model , Estimation , image segmentation , imagerestoration
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING