Title of article :
Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood
Author/Authors :
Xavier Descombes، نويسنده , , X.، نويسنده , , Morris، نويسنده , , R.D.، نويسنده , , Zerubia، نويسنده , , J.، نويسنده , , Berthod، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
10
From page :
954
To page :
963
Abstract :
Recent developments in statistics now allow maximum likelihood estimators for the parameters of Markov random fields (MRF’s) to be constructed. We detail the theory required, and present an algorithm that is easily implemented and practical in terms of computation time. We demonstrate this algorithm on three MRF models—the standard Potts model, an inhomogeneous variation of the Potts model, and a long-range interaction model, better adapted to modeling real-world images. We estimate the parameters from a synthetic and a real image, and then resynthesize the models to demonstrate which features of the image have been captured by the model. Segmentations are computed based on the estimated parameters and conclusions drawn.
Keywords :
Pottsmodel. , maximum likelihood , Chien model , Hierarchical model , Estimation , image segmentation , imagerestoration
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1999
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396219
Link To Document :
بازگشت