Title of article :
A new algorithm for N-dimensional Hilbert scanning
Author/Authors :
Kamata، نويسنده , , S.-I.، نويسنده , , Eason، نويسنده , , R.O.، نويسنده , , Bandou، نويسنده , , Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
10
From page :
964
To page :
973
Abstract :
There have been many applications of Hilbert curve, such as image processing, image compression, computer hologram, etc. The Hilbert curve is a one-to-one mapping between N-dimensional space and one-dimensional (1-D) space which preserves point neighborhoods as much as possible. There are several algorithms for N-dimensional Hilbert scanning, such as the Butz algorithm and the Quinqueton algorithm. The Butz algorithm is a mapping function using several bit operations such as shifting, exclusive OR, etc. On the other hand, the Quinqueton algorithm computes all addresses of this curve using recursive functions, but takes time to compute a one-to-one mapping correspondence. Both algorithms are complex to compute and both are difficult to implement in hardware. In this paper, we propose a new, simple, nonrecursive algorithm for N-dimensional Hilbert scanning using look-up tables. The merit of our algorithm is that the computation is fast and the implementation is much easier than previous ones.
Keywords :
Hilbert scan , multidimensional analysis , Peanocurve.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1999
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396220
Link To Document :
بازگشت