Title of article :
A statistical theory for optimal detection of moving objects in variable corruptive noise
Author/Authors :
Cheung، نويسنده , , J.F.Y.، نويسنده , , Wicks، نويسنده , , M.C.، نويسنده , , Genello، نويسنده , , G.J.، نويسنده , , Kurz، نويسنده , , L.
، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
In this paper, the classical analysis of variance is
extended to three-dimensional (3-D) Græco-Latin squares design
for multiframe processing applications. Conspicuous physical features,
including edges, lines, and corners, can then be expressed
as contrast functions. This enables the development of a new
methodology for detecting moving objects embedded in noise. The
new detector exploits spatial and temporal information uniformly
most powerful in a Gaussian environment with unknown and
time-varying noise variance. Also found is that a moving object
detector based on contrast functions coincides with a sufficient
statistic of the generalized likelihood ratio test. Extensive image
analysis demonstrates the practicality of the detector and
compares favorably to other classes of detectors.
Keywords :
Analysis of variance , detectionof edges , Generalized likelihood ratio test , Gr?co-Latin squares design , moving edges , polynomial approximation. , moving objects , Least squares estimation , F-statistic , contrast function
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING