Title of article :
A statistical theory for optimal detection of moving objects in variable corruptive noise
Author/Authors :
Cheung، نويسنده , , J.F.Y.، نويسنده , , Wicks، نويسنده , , M.C.، نويسنده , , Genello، نويسنده , , G.J.، نويسنده , , Kurz، نويسنده , , L. ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
16
From page :
1772
To page :
1787
Abstract :
In this paper, the classical analysis of variance is extended to three-dimensional (3-D) Græco-Latin squares design for multiframe processing applications. Conspicuous physical features, including edges, lines, and corners, can then be expressed as contrast functions. This enables the development of a new methodology for detecting moving objects embedded in noise. The new detector exploits spatial and temporal information uniformly most powerful in a Gaussian environment with unknown and time-varying noise variance. Also found is that a moving object detector based on contrast functions coincides with a sufficient statistic of the generalized likelihood ratio test. Extensive image analysis demonstrates the practicality of the detector and compares favorably to other classes of detectors.
Keywords :
Analysis of variance , detectionof edges , Generalized likelihood ratio test , Gr?co-Latin squares design , moving edges , polynomial approximation. , moving objects , Least squares estimation , F-statistic , contrast function
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
1999
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396309
Link To Document :
بازگشت