• Title of article

    Adaptive target detection in foliage-penetrating SAR images using alpha-stable models

  • Author/Authors

    Banerjee، نويسنده , , A.، نويسنده , , Burlina، Alberto B. نويسنده , , P.، نويسنده , , Chellappa، نويسنده , , R.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    9
  • From page
    1823
  • To page
    1831
  • Abstract
    Detecting targets occluded by foliage in foliage-penetrating (FOPEN) ultra-wideband synthetic aperture radar (UWB SAR) images is an important and challenging problem. Given the different nature of target returns in foliage and nonfoliage regions and very low signal-toclutter ratio in UWB imagery, conventional detection algorithms fail to yield robust target detection results. A new target detection algorithm is proposed that 1) incorporates symmetric alpha-stable (S S) distributions for accurate clutter modeling, 2) constructs a two-dimensional (2-D) site model for deriving local context, and 3) exploits the site model for region-adaptive target detection. Theoretical and empirical evidence is given to support the use of the S S model for image segmentation and constant false alarm rate (CFAR) detection. Results of our algorithm on real FOPEN images collected by the Army Research Laboratory are provided.
  • Keywords
    Alpha-stable models , SAR ATR , SAR segmentation.
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    1999
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    396315