Title of article :
Adaptive target detection in foliage-penetrating SAR images using alpha-stable models
Author/Authors :
Banerjee، نويسنده , , A.، نويسنده , , Burlina، Alberto B. نويسنده , , P.، نويسنده , , Chellappa، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
Detecting targets occluded by foliage in foliage-penetrating
(FOPEN) ultra-wideband synthetic aperture radar (UWB SAR) images
is an important and challenging problem. Given the different nature of
target returns in foliage and nonfoliage regions and very low signal-toclutter
ratio in UWB imagery, conventional detection algorithms fail to
yield robust target detection results.
A new target detection algorithm is proposed that 1) incorporates
symmetric alpha-stable (S S) distributions for accurate clutter modeling,
2) constructs a two-dimensional (2-D) site model for deriving local
context, and 3) exploits the site model for region-adaptive target detection.
Theoretical and empirical evidence is given to support the use of the
S S model for image segmentation and constant false alarm rate (CFAR)
detection. Results of our algorithm on real FOPEN images collected by
the Army Research Laboratory are provided.
Keywords :
Alpha-stable models , SAR ATR , SAR segmentation.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING