• Title of article

    A moment-based approach for deskewing rotationally symmetric shapes

  • Author/Authors

    Soo-Chang Pei، نويسنده , , Ji-Hwei Horng، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 1999
  • Pages
    4
  • From page
    1831
  • To page
    1834
  • Abstract
    The covariance matrix of a pattern is composed by its second order central moments. For a rotationally symmetric shape, its covariance matrix is a scalar identity matrix. In this work, we apply this property to restore the skewed shape of rotational symmetry. The relations between the skew transformation matrix and the covariance matrices of original and skewed shapes are derived. By computing the covariance matrix of the skewed shape and letting the covariance matrix of the original shape be a scalar identity matrix, the skew transformation matrix can be solved. Then, the rotationally symmetric shape can be recovered by multiplying the inverse transformation matrix with the skewed shape. The method does not rely on continuous contours and is robust to noise, because only the second-order moments of the input shape are required. Experimental results are also presented.
  • Keywords
    Rotation matrix , Rotational symmetry , covariance matrix , reflective symmetry , shear matrix , skewed symmetry.
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    1999
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    396316