Title of article :
Knowledge-based segmentation of SAR data with learned priors
Author/Authors :
haker Zahra، نويسنده , , S.، نويسنده , , Sapiro، نويسنده , , G.، نويسنده , , Tannenbaum، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
3
From page :
299
To page :
301
Abstract :
An approach for the segmentation of still and video synthetic aperture radar (SAR) images is described in this note. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayesʹ rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show with examples from public data sets that this method provides an efficient and fast technique for addressing the segmentation of SAR data.
Keywords :
Anisotropic Diffusion , Bayes rule , knowledge , learning , segmentation , Synthetic Aperture Radar (SAR).
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2000
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396352
Link To Document :
بازگشت