Title of article :
Knowledge-based segmentation of SAR data with learned priors
Author/Authors :
haker Zahra، نويسنده , , S.، نويسنده , , Sapiro، نويسنده , , G.، نويسنده , , Tannenbaum، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
An approach for the segmentation of still and video synthetic
aperture radar (SAR) images is described in this note. A priori knowledge
about the objects present in the image, e.g., target, shadow, and background
terrain, is introduced via Bayesʹ rule. Posterior probabilities obtained in
this way are then anisotropically smoothed, and the image segmentation is
obtained via MAP classifications of the smoothed data. When segmenting
sequences of images, the smoothed posterior probabilities of past frames
are used to learn the prior distributions in the succeeding frame. We show
with examples from public data sets that this method provides an efficient
and fast technique for addressing the segmentation of SAR data.
Keywords :
Anisotropic Diffusion , Bayes rule , knowledge , learning , segmentation , Synthetic Aperture Radar (SAR).
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING