Title of article :
The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results
Author/Authors :
Comer، نويسنده , , M.L.، نويسنده , , Delp، نويسنده , , E.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
In this paper, we present new results relative to
the “expectation–maximization/maximization of the posterior
marginals” (EM/MPM) algorithm for simultaneous parameter
estimation and segmentation of textured images. The EM/MPM
algorithm uses a Markov random field model for the pixel class
labels and alternately approximates the MPM estimate of the
pixel class labels and estimates parameters of the observed image
model. The goal of the EM/MPM algorithm is to minimize the
expected value of the number of misclassified pixels. We present
new theoretical results in this paper which show that the algorithm
can be expected to achieve this goal, to the extent that the EM
estimates of the model parameters are close to the true values of
the model parameters. We also present new experimental results
demonstrating the performance of the EM/MPM algorithm.
Keywords :
Expectation–maximization (EM) algorithm , maximizationof the posterior marginals (MPM) algorithm , segmentation.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING