Title of article :
Stroke-model-based character extraction from gray-level document images
Author/Authors :
Xiangyun Ye، نويسنده , , Cheriet، نويسنده , , M.، نويسنده , , Suen، نويسنده , , C.Y. ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
1152
To page :
1161
Abstract :
Global gray-level thresholding techniques such as Otsu’s method, and local gray-level thresholding techniques such as edge-based segmentation or adaptive thresholding method are powerful in extracting character objects from simple or slowly varying backgrounds. However, they are found to be insufficient when the backgrounds include sharply varying contours or fonts in different sizes. In this paper, a stroke model is proposed to depict the local features of character objects as double-edges in a predefined size. This model enables us to detect thin connected components selectively, while ignoring relatively large backgrounds that appear complex. Meanwhile, since the stroke width restriction is fully factored in, the proposed technique can be used to extract characters in predefined font sizes. To process large volumes of documents efficiently, a hybrid method is proposed for character extraction from various backgrounds. Using the measurement of class separability to differentiate images with simple backgrounds from those with complex backgrounds, the hybrid method can process documents with different backgrounds by applying the appropriate methods. Experiments on extracting handwritings from check image, as well as machine-printed characters from scene images demonstrate the effectiveness of the proposed model.
Keywords :
Binarization , background removal , local thresholding. , documentimage analysis
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2001
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396640
Link To Document :
بازگشت