Title of article :
Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement
Author/Authors :
Nguyen، نويسنده , , N.، نويسنده , , Milanfar، نويسنده , , P.، نويسنده , , Golub، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
10
From page :
1299
To page :
1308
Abstract :
In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters.We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cross-validation method (GCV). We propose efficient approximation techniques based on the Lanczos algorithm and Gauss quadrature theory, reducing the computational complexity of the GCV. Data-driven PSF and regularization parameter estimation experiments with synthetic and real image sequences are presented to demonstrate the effectiveness and robustness of our method.
Keywords :
Blind restoration , Blur identification , generalizedcross-validation , Quadrature rules , superresolution.
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2001
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396653
Link To Document :
بازگشت