Title of article :
Information-theoretic matching of two point sets
Author/Authors :
Yue Wang، نويسنده , , Woods، نويسنده , , K.، نويسنده , , McClain، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
This paper describes the theoretic roadmap of least
relative entropy matching of two point sets. The novel feature is
to align two point sets without needing to establish explicit point
correspondences. The recovery of transformational geometry is
achieved using a mixture of principal axes registrations, whose
parameters are estimated by minimizing the relative entropy
between the two point distributions and using the expectation-
maximization algorithm. We give evidence of the optimality
of the method and we then evaluate the algorithm’s performance
in both rigid and nonrigid image registration cases.
Keywords :
InformationTheory , neural computation. , image registration , Finite normal mixture
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING