Title of article :
Information-theoretic matching of two point sets
Author/Authors :
Yue Wang، نويسنده , , Woods، نويسنده , , K.، نويسنده , , McClain، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
5
From page :
868
To page :
872
Abstract :
This paper describes the theoretic roadmap of least relative entropy matching of two point sets. The novel feature is to align two point sets without needing to establish explicit point correspondences. The recovery of transformational geometry is achieved using a mixture of principal axes registrations, whose parameters are estimated by minimizing the relative entropy between the two point distributions and using the expectation- maximization algorithm. We give evidence of the optimality of the method and we then evaluate the algorithm’s performance in both rigid and nonrigid image registration cases.
Keywords :
InformationTheory , neural computation. , image registration , Finite normal mixture
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2002
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
396779
Link To Document :
بازگشت