Title of article :
Spatiotemporal Video Segmentation Based on Graphical Models
Author/Authors :
Y. Wang، نويسنده , , K.-F. Loe، نويسنده , , T. Tan، نويسنده , , and J.-K. Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
11
From page :
937
To page :
947
Abstract :
This paper proposes a probabilistic framework for spatiotemporal segmentation of video sequences. Motion information, boundary information from intensity segmentation, and spatial connectivity of segmentation are unified in the video segmentation process by means of graphical models. A Bayesian network is presented to model interactions among the motion vector field, the intensity segmentation field, and the video segmentation field. The notion of the Markov random field is used to encourage the formation of continuous regions. Given consecutive frames, the conditional joint probability density of the three fields is maximized in an iterative way. To effectively utilize boundary information from the intensity segmentation, distance transformation is employed in local objective functions. Experimental results show that the method is robust and generates spatiotemporally coherent segmentation results. Moreover, the proposed video segmentation approach can be viewed as the compromise of previous motion based approaches and region merging approaches.
Keywords :
motionsegmentation , Markov random field (MRF) , spatiotemporal segmentation. , Graphical model , Bayesian network , Region merging
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2005
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
397114
Link To Document :
بازگشت