• Title of article

    CLUE: Cluster-Based Retrieval of Images by Unsupervised Learning

  • Author/Authors

    Y. Chen، نويسنده , , J. Li and J. Z. Wang، نويسنده , , and R. Krovetz، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    15
  • From page
    1187
  • To page
    1201
  • Abstract
    In a typical content-based image retrieval (CBIR) system, target images (images in the database) are sorted by feature similarities with respect to the query. Similarities among target images are usually ignored. This paper introduces a new technique, cluster-based retrieval of images by unsupervised learning (CLUE), for improving user interaction with image retrieval systems by fully exploiting the similarity information. CLUE retrieves image clusters by applying a graph-theoretic clustering algorithm to a collection of images in the vicinity of the query. Clustering inCLUE is dynamic. In particular, clusters formed depend on which images are retrieved in response to the query. CLUE can be combined with any real-valued symmetric similarity measure (metric or nonmetric). Thus, it may be embedded in many current CBIR systems, including relevance feedback systems. The performance of an experimental image retrieval system using CLUE is evaluated on a database of around 60,000 images from COREL. Empirical results demonstrate improved performance compared with aCBIR system using the same image similarity measure. In addition, results on images returned by Google’s Image Search reveal the potential of applying CLUE to real-world image data and integrating CLUE as a part of the interface for keyword-based image retrieval systems.
  • Keywords
    Similarity measure , Content-based image retrieval (CBIR) , spectral graph clustering , Imageclassification , unsupervisedlearning.
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    2005
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    397135