Title of article
Automatic Selection of Parameters for Vessel/Neurite Segmentation Algorithms
Author/Authors
M.-A. Abdul-Karim، نويسنده , , and B. Roysam، نويسنده , , N. M. Dowell-Mesfin، نويسنده , , A. Jeromin، نويسنده , , M. Yuksel، نويسنده , , S. Kalyanaraman، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2005
Pages
13
From page
1338
To page
1350
Abstract
An automated method is presented for selecting optimal parameter settings for vessel/neurite segmentation algorithms using the minimum description length principle and a recursive random search algorithm. It trades off a probabilistic measure of image-content coverage against its conciseness. It enables nonexpert users to select parameter settings objectively, without knowledge of underlying algorithms, broadening the applicability of the segmentation algorithm, and delivering higher morphometric accuracy. It enables adaptation of parameters across batches of images. It simplifies the user interface to just one optional parameter and reduces the cost of technical support. Finally, the method is modular, extensible, and amenable to parallel computation. The method is applied to 223 images of human retinas and cultured neurons, from four different sources, using a single segmentation algorithm with eight parameters. Improvements in segmentation quality compared to default settings using 1000 iterations ranged from 4.7%-21%. Paired t-tests showed that improvements are statistically significant (p<0.0005). Most of the improvement occurred in the first 44 iterations. Improvements in description lengths and agreement with the ground truth were strongly correlated (/spl rho/=0.78).
Keywords
minimum descriptionlength , image segmentation , Optimization methods , segmentation evaluation.
Journal title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year
2005
Journal title
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number
397147
Link To Document