Title of article :
Toward Automatic Phenotyping of Developing Embryos From Videos
Author/Authors :
F. Ning، نويسنده , , D. Delhomme، نويسنده , , Y. LeCun، نويسنده , , F. Piano، نويسنده , , L. Bottou، نويسنده , , and P. E. Barbano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
1360
To page :
1371
Abstract :
We describe a trainable system for analyzing videos of developing C. elegans embryos. The system automatically detects, segments, and locates cells and nuclei in microscopic images. The system was designed as the central component of a fully automated phenotyping system. The system contains three modules 1) a convolutional network trained to classify each pixel into five categories: cell wall, cytoplasm, nucleus membrane, nucleus, outside medium; 2) an energy-based model, which cleans up the output of the convolutional network by learning local consistency constraints that must be satisfied by label images; 3) a set of elastic models of the embryo at various stages of development that are matched to the label images.
Keywords :
energy-based model , image segmentation , nonlinear filter. , Convolutional network
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Serial Year :
2005
Journal title :
IEEE TRANSACTIONS ON IMAGE PROCESSING
Record number :
397149
Link To Document :
بازگشت