• Title of article

    Adaptive Active Appearance Models

  • Author/Authors

    A. U. Batur and M. H. Hayes، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2005
  • Pages
    15
  • From page
    1707
  • To page
    1721
  • Abstract
    The active appearance model (AAM) is a powerful tool for modeling images of deformable objects and has been successfully used in a variety of alignment, tracking, and recognition applications.AAMuses subspace-based deformable models to represent the images of a certain object class. In general, fitting such complicated models to previously unseen images using standard optimization techniques is a computationally complex task because the gradient matrix has to be numerically computed at every iteration. The critical feature of AAM is a fast convergence scheme which assumes that the gradient matrix is fixed around the optimal coefficients for all images. Our work in this paper starts with the observation that such a fixed gradient matrix inevitably specializes to a certain region in the texture space, and the fixed gradient matrix is not a good estimate of the actual gradient as the target texture moves away from this region. Hence, we propose an adaptive AAMalgorithm that linearly adapts the gradient matrix according to the composition of the target image’s texture to obtain a better estimate for the actual gradient. We show that the adaptive AAM significantly outperforms the basic AAM, especially in images that are particularly challenging for the basic algorithm. In terms of speed and accuracy, the idea of a linearly adaptive gradient matrix presented in this paper provides an interesting compromise between a standard optimization technique that recomputes the gradient at every iteration and the fixed gradient matrix approach of the basic AAM.
  • Keywords
    Active appearance models (AAMs) , appearancemodels , Facial feature detection , model matching.
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Serial Year
    2005
  • Journal title
    IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Record number

    397178