Title of article :
Power quality disturbance waveform recognition using wavelet-based neural classifier. II. Application
Author/Authors :
Santoso، نويسنده , , S.، نويسنده , , Powers، نويسنده , , E.J.، نويسنده , , Grady، نويسنده , , W.M.، نويسنده , , Parsons، نويسنده , , A.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
A wavelet-based neural classifier is constructed and
thoroughly tested under various conditions. The classifier is able to
provide a degree of belief for the identified waveform. The degree of
belief gives an indication about the goodness of the decision made.
It is also equipped with an acceptance threshold so that it can reject
ambiguous disturbance waveforms. The classifier is able to achieve
the accuracy rate of more than 90% by rejecting less than 10% of
the waveforms as ambiguous.
Keywords :
power quality disturbance , voting scheme. , Automatic classification and identification , Dempster–Shafer theory of evidence
Journal title :
IEEE TRANSACTIONS ON POWER DELIVERY
Journal title :
IEEE TRANSACTIONS ON POWER DELIVERY