Title of article :
Power quality disturbance waveform recognition using wavelet-based neural classifier. II. Application
Author/Authors :
Santoso، نويسنده , , S.، نويسنده , , Powers، نويسنده , , E.J.، نويسنده , , Grady، نويسنده , , W.M.، نويسنده , , Parsons، نويسنده , , A.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
7
From page :
229
To page :
235
Abstract :
A wavelet-based neural classifier is constructed and thoroughly tested under various conditions. The classifier is able to provide a degree of belief for the identified waveform. The degree of belief gives an indication about the goodness of the decision made. It is also equipped with an acceptance threshold so that it can reject ambiguous disturbance waveforms. The classifier is able to achieve the accuracy rate of more than 90% by rejecting less than 10% of the waveforms as ambiguous.
Keywords :
power quality disturbance , voting scheme. , Automatic classification and identification , Dempster–Shafer theory of evidence
Journal title :
IEEE TRANSACTIONS ON POWER DELIVERY
Serial Year :
2000
Journal title :
IEEE TRANSACTIONS ON POWER DELIVERY
Record number :
399968
Link To Document :
بازگشت