Title of article :
Pattern recognition applications for power system disturbance classification
Author/Authors :
Gaouda، نويسنده , , A.M.، نويسنده , , Kanoun، نويسنده , , S.H.، نويسنده , , Salama، نويسنده , , M.M.A.، نويسنده , , Chikhani، نويسنده , , A.Y.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
7
From page :
677
To page :
683
Abstract :
This paper presents an automated online disturbance classification technique. This technique is based on wavelet multiresolution analysis and pattern recognition techniques. The wavelet-multiresolution transform is introduced as a powerful tool for feature extraction in order to classify different disturbances. Minimum Euclidean distance, -nearest neighbor, and neural network classifiers are used to evaluate the efficiency of the extracted features.
Keywords :
power quality , wavelet analysis. , nearest neighbor , minimum Euclidean distance , multiresolution signal decomposition , neural networkrecognition techniques
Journal title :
IEEE TRANSACTIONS ON POWER DELIVERY
Serial Year :
2002
Journal title :
IEEE TRANSACTIONS ON POWER DELIVERY
Record number :
400389
Link To Document :
بازگشت