Title of article :
On a construction of a hierarchy of best linear spline approximations using repeated bisection
Author/Authors :
Hamann، نويسنده , , B.، نويسنده , , Jordan، نويسنده , , B.W.، نويسنده , , Wiley، نويسنده , , D.F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
17
From page :
30
To page :
46
Abstract :
We present a method for the construction of hierarchies of single-valued functions in one, two, and three variables. The input to our method is a coarse decomposition of the compact domain of a function in the form of an interval (univariate case), triangles (bivariate case), or tetrahedra (trivariate case). We compute best linear spline approximations, understood in an integral least squares sense, for functions defined over such triangulations and refine triangulations using repeated bisection. This requires the identification of the interval (triangle, tetrahedron) with largest error and splitting it into two intervals (triangles, tetrahedra). Each bisection step requires the recomputation of all spline coefficients due to the global nature of the best approximation problem. Nevertheless, this can be done efficiently by bisecting multiple intervals (triangles, tetrahedra) in one step and by reducing the bandwidths of the matrices resulting from the normal equations.
Keywords :
visualization. , approximation , Best approximation , Hierarchical representation , linear spline , scattered data , multiresolution method , Unstructured grid , Spline , triangulation , Bisection , Grid generation
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Serial Year :
1999
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Record number :
401631
Link To Document :
بازگشت