Title of article :
Topological Visualization of Brain Diffusion MRI Data
Author/Authors :
Schultz، نويسنده , , T.، نويسنده , , Theisel، نويسنده , , H.، نويسنده , , Seidel، نويسنده , , H.-P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
1496
To page :
1503
Abstract :
Topological methods give concise and expressive visual representations of flow fields. The present work suggests a comparable method for the visualization of human brain diffusion MRI data. We explore existing techniques for the topological analysis of generic tensor fields, but find them inappropriate for diffusion MRI data. Thus, we propose a novel approach that considers the asymptotic behavior of a probabilistic fiber tracking method and define analogs of the basic concepts of flow topology, like critical points, basins, and faces, with interpretations in terms of brain anatomy. The resulting features are fuzzy, reflecting the uncertainty inherent in any connectivity estimate from diffusion imaging. We describe an algorithm to extract the new type of features, demonstrate its robustness under noise, and present results for two regions in a diffusion MRI dataset to illustrate that the method allows a meaningful visual analysis of probabilistic fiber tracking results.
Keywords :
uncertainty visualization. , Diffusion tensor , tensor topology , probabilistic fiber tracking
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Serial Year :
2007
Journal title :
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
Record number :
402161
Link To Document :
بازگشت