Title of article :
Real-time detection using wavelet transform and neural network of short-circuit faults within a train in DC transit systems
Author/Authors :
Chang، نويسنده , , C.S.; Kumar، نويسنده , , S.; Liu، نويسنده , , B.; Khambadkone، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
A method is proposed for the real-time detection of DC-link short-circuit faults in DC
transit systems. The discrete wavelet transform is implemented to detect any surges in the DC thirdrail
current waveform. In the event of a surge the wavelet transform extracts a feature vector from the
current waveform and feeds it to a self-organising neural network. The neural network determines
whether the feature vector belongs to a normal or a fault current surge.
Journal title :
IEE Proceedings Electric Power Applications
Journal title :
IEE Proceedings Electric Power Applications