Author/Authors :
Bershad، نويسنده , , N.J.، نويسنده , , Bouchired، نويسنده , , S.، نويسنده , , Castanie، نويسنده , , F.، نويسنده ,
Abstract :
This correspondence investigates the statistical behavior
of two adaptive gradient search algorithms for identifying an unknown
Wiener–Hammerstein System (WHS) with Gaussian inputs. The first
scheme attempts to identify the WHS with an LMS adaptive filter. The
LMS algorithm identifies a scaled version of the convolution of the input
and output linear filters of the WHS. The second scheme attempts to
identify the unknown WHS with a gradient adaptive WHS when the shape
of the nonlinearity is known a priori. The mean behavior of the gradient
recursions are analyzed when the WHS nonlinearity is modeled by an
error function. The mean recursions yield very good agreement with
Monte Carlo simulations for slow learning.