Title of article :
The discrete fractional Fourier transform
Author/Authors :
Candan، نويسنده , , C.، نويسنده , , Kutay، نويسنده , , M.A.، نويسنده , , Ozaktas، نويسنده , , H.M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
We propose and consolidate a definition of the
discrete fractional Fourier transform that generalizes the discrete
Fourier transform (DFT) in the same sense that the continuous
fractional Fourier transform generalizes the continuous ordinary
Fourier transform. This definition is based on a particular set of
eigenvectors of the DFT matrix, which constitutes the discrete
counterpart of the set of Hermite–Gaussian functions. The definition
is exactly unitary, index additive, and reduces to the DFT for
unit order. The fact that this definition satisfies all the desirable
properties expected of the discrete fractional Fourier transform
supports our confidence that it will be accepted as the definitive
definition of this transform.
Keywords :
Chirplets , discrete Wigner distributions , time–frequency analysis. , Hermite–Gaussian functions
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING