Title of article
Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems
Author/Authors
Celka، نويسنده , , P.، نويسنده , , Bershad، نويسنده , , N.J.، نويسنده , , Vesin، نويسنده , , J.-M.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2000
Pages
6
From page
1820
To page
1825
Abstract
This correspondence presents analytical results and Monte
Carlo simulations for the fluctuation behavior of a stochastic gradient
adaptive identification scheme. This scheme identifies a polynomialWiener
system (linear FIR filter followed by a static polynomial nonlinearity)
for noisy output observations. The analysis includes 1) bounds and a
recursion for the misadjustment matrix and 2) algorithm mean square
stability regions. A diagonal step-size matrix for the adaptive coefficients
is introduced to speed up convergence. The theoretical predictions of the
fluctuation analysis are supported by Monte Carlo simulations.
Keywords
Nonlinear system identification , polynomial Wiener models. , Adaptive stochastic gradient
Journal title
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year
2000
Journal title
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number
403303
Link To Document