Title of article :
Support Vector Method for Robust ARMA System Identification
Author/Authors :
J. L. Rojo-?lvarez، نويسنده , , M. Mart?nez-Ram?n، نويسنده , , M. de Prado-Cumplido، نويسنده , , A. Artés-Rodr?guez، نويسنده , , A. R. Figueiras-Vidal، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
This paper presents a new approach to auto-regressive
and moving average (ARMA) modeling based on the support
vector method (SVM) for identification applications. A statistical
analysis of the characteristics of the proposed method is carried
out. An analytical relationship between residuals andSVM-ARMA
coefficients allows the linking of the fundamentals of SVM with
several classical system identification methods. Additionally, the
effect of outliers can be cancelled. Application examples show the
performance of SVM-ARMA algorithm when it is compared with
other system identification methods.
Keywords :
supportvector method , System identification , Cross-correlation , Time Series. , ARMA modeling
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING