Title of article :
Adaptive Blind Deconvolution of Linear Channels Using Renyi’s Entropy with Parzen Window Estimation
Author/Authors :
D. Erdogmus، نويسنده , , K. E. Hild، نويسنده , , J. C. Principe، نويسنده , , M. Lazaro، نويسنده , , and I. Santamaria، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
10
From page :
1489
To page :
1498
Abstract :
Blind deconvolution of linear channels is a fundamental signal processing problem that has immediate extensions to multiple-channel applications. In this paper, we investigate the suitability of a class of Parzen-window-based entropy estimates, namely Renyi’s entropy, as a criterion for blind deconvolution of linear channels. Comparisons between maximum and minimum entropy approaches, as well as the effect of entropy order, equalizer length, sample size, and measurement noise on performance, will be investigated through Monte Carlo simulations. The results indicate that this nonparametric entropy estimation approach outperforms the standard Bell–Sejnowski and normalized kurtosis algorithms in blind deconvolution. In addition, the solutions using Shannon’s entropy were not optimal either for super- or sub-Gaussian source densities.
Keywords :
blind deconvolution , Renyi’sentropy. , Parzen windowing
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year :
2004
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number :
403573
Link To Document :
بازگشت