• Title of article

    Linear Minimax Regret Estimation of Deterministic Parameters with Bounded Data Uncertainties

  • Author/Authors

    Y. C. Eldar، نويسنده , , A. Ben-Tal، نويسنده , , A. Nemirovski، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2004
  • Pages
    12
  • From page
    2177
  • To page
    2188
  • Abstract
    We develop a new linear estimator for estimating an unknown parameter vector x in a linear model in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-case regret over all bounded data vectors, namely, the worst-case difference between the mean-squared error (MSE) attainable using a linear estimator that does not know the true parameters x and the optimal MSE attained using a linear estimator that knows x. We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.
  • Keywords
    Deterministic parameter estimation , Linear estimation , mean squared error bounded data uncertainties estimation , Minimax estimation , regret.
  • Journal title
    IEEE TRANSACTIONS ON SIGNAL PROCESSING
  • Serial Year
    2004
  • Journal title
    IEEE TRANSACTIONS ON SIGNAL PROCESSING
  • Record number

    403607