Title of article :
Linear Minimax Regret Estimation of Deterministic Parameters with Bounded Data Uncertainties
Author/Authors :
Y. C. Eldar، نويسنده , , A. Ben-Tal، نويسنده , , A. Nemirovski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
12
From page :
2177
To page :
2188
Abstract :
We develop a new linear estimator for estimating an unknown parameter vector x in a linear model in the presence of bounded data uncertainties. The estimator is designed to minimize the worst-case regret over all bounded data vectors, namely, the worst-case difference between the mean-squared error (MSE) attainable using a linear estimator that does not know the true parameters x and the optimal MSE attained using a linear estimator that knows x. We demonstrate through several examples that the minimax regret estimator can significantly increase the performance over the conventional least-squares estimator, as well as several other least-squares alternatives.
Keywords :
Deterministic parameter estimation , Linear estimation , mean squared error bounded data uncertainties estimation , Minimax estimation , regret.
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Serial Year :
2004
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Record number :
403607
Link To Document :
بازگشت