Title of article :
SVM Multiregression for Nonlinear Channel Estimation in Multiple-Input Multiple-Output Systems.
Author/Authors :
M. S?nchez-Fern?ndez، نويسنده , , M. de Prado-Cumplido، نويسنده , , J. Arenas-Garc?a، نويسنده , , and F. Pérez-Cruz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
This paper addresses the problem of multiple-input
multiple-output (MIMO) frequency nonselective channel estimation.
We develop a new method for multiple variable regression
estimation based on Support Vector Machines (SVMs): a
state-of-the-art technique within the machine learning community
for regression estimation. We show how this new method, which
we call M-SVR, can be efficiently applied. The proposed regression
method is evaluated in a MIMO system under a channel
estimation scenario, showing its benefits in comparison to previous
proposals when nonlinearities are present in either the transmitter
or the receiver sides of the MIMO system.
Keywords :
support vector machine. , Channel Estimation , Multivariateregression , MIMOsystems
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING
Journal title :
IEEE TRANSACTIONS ON SIGNAL PROCESSING