Title of article :
Characterization of Global Mean Sea Level Variations Observed by TOPEX/POSEIDON Using Empirical Orthogonal Functions
Author/Authors :
R.S. Nerem، نويسنده , , K.E. Rachlin ، نويسنده , , B.D. Beckley ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Abstract :
The TOPEX/POSEIDON (T/P) satellite altimeter mission has provided estimates of global
mean sea level since late 1992 with a precision of approximately 4 mm. Over the first 3.5 years
of the mission, T/P has observed a mean sea level rise of +0.5 mm/year when on-board estimates
of the instrument drift are employed (and after correcting for a recently discovered software error),
and +2.8 mm/year when an additional external tide gauge-based calibration estimate is used. A
preliminary estimate of the error in the latter estimate is 1.3mm/year, however this issue requiresmore
research. Characterization of the observed sea level variations using Empirical Orthogonal Functions
(EOFs) indicates that most of the mean sea level rise can be described by a single mode of the EOF
expansion. The spatial characteristics of this mode suggests it is related to the El Nino Southern
Oscillation (ENSO) phenomena. EOF analysis of sea level variations from the Semtner/Chervin
ocean circulation model reveal a nearly identical mode, although its effect on mean sea level is
unknown due to a constant volume constraint used in the model. EOF analysis of measured sea
surface temperature (SST) variations also show a mode with similar temporal and spatial structure.
However, the concentration of the observed sea level rise in thismode does not preclude the possibility
thatmultiple phenomena have contributed to thismode, thus a link between the observed sea level rise
and the ENSO phenomena is only weakly suggested. The absolute value of the observed mean sea
level rise will depend on refinements currently being made in the instrument calibration techniques.
In addition, the possibility of interannual and decadal variations of global mean sea level requires
that a much longer time series of satellite altimetry be collected before variations caused by climate
change can be unambiguously detected.
Journal title :
Surveys in Geophysics
Journal title :
Surveys in Geophysics