Title of article :
Development of a physics analysis procedure for the prismatic very high temperature gas-cooled reactors
Author/Authors :
Kang-Seog Kim، نويسنده , , Jin-Young Cho، نويسنده , , Hyun-Chul Lee ، نويسنده , , Jae Man Noh، نويسنده , , Sung-Quun Zee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
12
From page :
849
To page :
860
Abstract :
A new physics analysis procedure has been developed for a prismatic very high temperature gas-cooled reactor based on a conventional two-step procedure for the PWR physics analysis. The HELIOS and MASTER codes were employed to generate the coarse group cross sections through a transport lattice calculation, and to perform the 3-dimensional core physics analysis by a nodal diffusion calculation, respectively. Physics analysis of the prismatic VHTRs involves particular modeling issues such as a double heterogeneity of the coated fuel particles, a neutron streaming in the coolant channels, a strong core-reflector interaction, and large spectrum shifts due to changes of the surrounding environment and state parameters. Double heterogeneity effect was considered by using a recently developed reactivity-equivalent physical transformation method. Neutron streaming effect was quantified through 3-dimensional Monte Carlo transport calculations by using the MCNP code. Strong core-reflector interaction could be handled by applying an equivalence theory to the generation of the reflector cross sections. The effects of a spectrum shift could be covered by optimizing the coarse energy group structure. A two-step analysis procedure was established for the prismatic VHTR physics analysis by combining all the methodologies described above. The applicability of our code system was tested against core benchmark problems. The results of these benchmark tests show that our code system is very accurate and practical for a prismatic VHTR physics analysis.
Journal title :
Annals of Nuclear Energy
Serial Year :
2007
Journal title :
Annals of Nuclear Energy
Record number :
406339
Link To Document :
بازگشت