Abstract :
In quadruple isotropic (QUADRISO) coated particles, a burnable absorber layer surrounds the fuel kernel; consequently, during irradiation, the poison depletion allows more neutrons to stream into the kernel and to produce more fission reactions that attenuate the reactivity loss due to fuel depletion. In our previous studies, we have proposed for the first time the novel concept of QUADRISO particles for managing the long term excess of reactivity and we have shown in details how the new concept flattens the reactivity curve as function of time compared to traditional designs of burnable absorbers. In the present study, we apply the new concept of QUADRISO particles for transmuting Light Water Reactors waste in a prismatic high temperature reactor. We simulated two irradiation periods of 500 and 200 days that allow to transmute over 95% and 52% of 239Pu and actinides, respectively, without any reprocessing of the irradiated fuel in-between. During the first irradiation period the high initial excess of reactivity is managed by the QUADRISO particles; during the second irradiation period, there is no need of QUADRISO particles because of the small initial fissile inventory in the core.