Title of article :
Nonparametric Regression Applied to Quantitative Structure-Activity Relationships
Author/Authors :
Constans، Pere نويسنده , , Hirst، Jonathan D. نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2000
Pages :
-451
From page :
452
To page :
0
Abstract :
Several nonparametric regressors have been applied to modeling quantitative structure-activity relationship (QSAR) data. The simplest regressor, the Nadaraya-Watson, was assessed in a genuine multivariate setting. Other regressors, the local linear and the shifted Nadaraya-Watson, were implemented within additive models-a computationally more expedient approach, better suited for low-density designs. Performances were benchmarked against the nonlinear method of smoothing splines. A linear reference point was provided by multilinear regression (MLR). Variable selection was explored using systematic combinations of different variables and combinations of principal components. For the data set examined, 47 inhibitors of dopamine beta-hydroxylase, the additive nonparametric regressors have greater predictive accuracy (as measured by the mean absolute error of the predictions or the Pearson correlation in cross-validation trails) than MLR. The use of principal components did not improve the performance of the nonparametric regressors over use of the original descriptors, since the original descriptors are not strongly correlated. It remains to be seen if the nonparametric regressors can be successfully coupled with better variable selection and dimensionality reduction in the context of high-dimensional QSARs.
Keywords :
Infrared spectroscopy , Organic compounds , Chemical synthesis , Electronic paramagnetic resonance (EPR) , Fullerenes
Journal title :
Journal of Chemical Information and Computer Sciences
Serial Year :
2000
Journal title :
Journal of Chemical Information and Computer Sciences
Record number :
40887
Link To Document :
بازگشت